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A derivation is presented of Green’s function in an arbitrary, heterogeneous conductive medium subject to
random, ambient, uncorrelated noise sources. The approach for extracting Green’s function is based on the
correlation of time series of magnetic field components at two independent locations. As in the related case for
the electric field, where the volume distribution of noise sources must be spatially correlated with the hetero-
geneous conductivity distribution, Green’s function for magnetic field requires noise sources to be spatially
correlated with the volume distribution of magnetic permeability. For applications of electromagnetic imaging
of Earth’s deep subsurface, the effect of magnetic permeability variations in the subsurface is often assumed to
be negligible when compared to the effect of conductivity variations. Hence, the expressions derived here may
be useful for passive electromagnetic subsurface imaging, in apparent contrast to their electric field counter-
parts. Numerical validation exercises are described which validate this theory for Green’s function estimation
in the low-frequency limit.
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I. INTRODUCTION

The idea of empirical Green’s function �EGF� estimation
from correlation of time series in response external random
forcing has a long history in seismology and acoustics �1�
and has recently gained traction toward becoming a main-
stream Earth exploration method to image, for example, deep
crustal structure �2�, hydrocarbon reservoirs �3�, and earth-
quake dynamics �4�. The attraction of such an approach is
clear: sources of noise, whose effects previously required
heuristic filtering to isolate the primary signal from a known
seismic source, could now be embraced in their full com-
plexity, and furthermore, exploited for improved subsurface
seismic resolution.

Until recently, EGF theory only appeared applicable to
systems whose governing differential equations were invari-
ant under time reversal �5�, that is, for nonattenuating sys-
tems. However, it has since been shown �6� that for the case
of pressure diffusion the EGF could be extracted from cor-
relation of time series as long as the sources of random noise
were assumed to be volumetrically distributed throughout the
system. Applying this same approach to the quasistatic elec-
tromagnetic induction in a heterogeneous electrically con-
ductive material would further require the power spectrum of
the noise sources to be spatially correlated with the conduc-
tivity variations in the medium if the EGF for electric field is
sought �6�, but not, as will be shown below, for the case of
magnetic field EGF.

Alternatives to the volume-distributed source formulation
for electromagnetics have been investigated, e.g., �7–9�, in
which case the sources are taken to lie on some bounding
surface encapsulating the region of study. Unified theories of
EGF estimation have also been proposed �10� in which the
electric and magnetic fields are inherently coupled. However,
to our knowledge, the present work is the first explicit dem-

onstration of EGF estimation for decoupled magnetic fields
and heterogeneous media assuming the area of study is fully
impregnated with random point sources of current or time
varying magnetization.

Take Faraday’s law of induction,

� � E = − �t��H + Ms� �1�

and Ampere’s current law

� � H = �E + �t�E + Js �2�

as the starting point for the discussion that follows, where the
electric field E, magnetic field H are functions of both time t
and position r throughout a stationary medium of heteroge-
neous electrical conductivity ��r�, dielectric permittivity
��r�, and magnetic permeability ��r�, and subject to both
electric Js and magnetic Ms sources. Assuming the Fourier
Transform with respect to time of Eqs. �1� and �2� exists such
that �t→ i�, that is

F�F�r,t�� = f�r,�� = �
−�

�

F�r,t�exp�− i�t�dt

with i=�−1, the electric and magnetic fields are mapped into
the complex frequency domain as �E ,H�→ �e ,h�. Provided
the electrical conductivity and magnetic permeability are
time-invariant, the frequency-domain equivalents of Eqs. �1�
and �2� become

� � e = − i���h + F�Ms�� �3�

and

� � h = �̂e + F�Js� �4�

with complex conductivity �̂�r�=��r�+i���r�. Substituting
Eq. �3� into Eq. �4� results in the fundamental partial differ-
ential equation from which Green’s function will ultimately
be derived*cjweiss@vt.edu
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� �
1

�̂
� � h + i��h = f , �5�

where

f�r,�� = F	− i��Ms�r,t� + � �
1

�̂
Js�r,t�
 . �6�

Observe that Eq. �5� is a “full physics” solution to the Max-
well equations where the spatially variable complex conduc-
tivity �̂ permits both diffusive and wavelike energy transport
by its real and imaginary components, respectively. In re-
gions such as the air, where the electrical conductivity is
effectively zero, the value of �̂ is dominated by its nonzero
imaginary component, and hence, the quotient in curl-curl
term of Eq. �5� remains well-defined. Denoting complex con-
jugation by the superscript �, the time-reversed equivalent of
Eq. �5� is

� �
�̂

��̂�2
� � h� − i��h� = f�. �7�

In Eq. �3�–�5� and �7� note that the material properties �, �,
and � remain space-dependent �scalar� quantities, represent-
ing an arbitrary �isotropic� heterogeneous medium, with an
implicit dependence on the position vector r unless stated
otherwise. This more compact notation will be continued
throughout the remainder of the manuscript without any loss
of generality.

II. REPRESENTATION THEOREMS OF THE
CORRELATION AND CONVOLUTION TYPE

Following the development in Snieder �6�, which itself is
based on Fokkema and van den Berg and co-workers �11,12�,
representation theorems of the correlation and convolution
type are derived specifically for the time-forward and time-
reverse expressions in Eq. �5� and �7�. For each of the rep-
resentation theorems, the magnetic field resulting from an
arbitrary source fA is denoted with a subscript as hA, and
similarly for a source B.

Considering first the time-forward expression in Eq. �5�,
the fields hA and hB are related by

hB · � �
1

�̂
� � hA + i���hB · hA� = hB · fA �8�

and

hA · � �
1

�̂
� � hB + i���hA · hB� = hA · fB �9�

for arbitrary sources A and B, where · denotes the dot prod-
uct. Subtraction of Eq. �9� from Eq. �8� and subsequent vol-
ume integration over the domain � results in

�
�
�hB · � �

1

�̂
� � hA − hA · � �

1

�̂
� � hBd�

= �
�

�hB · fA − hA · fB�d� , �10�

the left-hand side of which is equivalent to a surface integral

over the domain 	 bounding � with outward-pointing nor-
mal n as

�
	

�̂�

��̂�2
��� � hA� � hB − �� � hB� � hA� · n d	 . �11�

For any compact sources A and B, this integral vanishes as
�= �−� ,+��3 due to exponentially vanishing fields hA and
hB on 	, and hence, the representation theorem of convolu-
tion type is given by

�
�

�hB · fA − hA · fB�d� = 0. �12�

Note, however, that the assumption of an infinite domain �
is not a prerequisite for Eq. �12� to hold. All domains � and
source pairs �A ,B� where Eq. �11� is equal to zero are
equally valid and yield an equivalent representation theorem
Eq. �12�. However, for simplicity, only the infinite domain
will be considered further here.

Following in a similar fashion to the preceding develop-
ment of Eq. �8� through Eq. �12�, consideration of the time-
reversed expression Eq. �7� for source B yields the following
pair of coupled equations:

hB
� · � �

�̂�

��̂�2
� � hA + i���hB

� · hA� = hB
� · fA �13�

and

hA · � �
�̂

��̂�2
� � hB

� − i���hA · hB
�� = hA · fB

� . �14�

Subtraction of Eq. �14� from Eq. �13� and subsequent volume
integration over the domain � yields the representation theo-
rem of the correlation type,

− 2�
�

Im��̂�
��̂�2

�� � hA� · �� � hB
��d� + 2i��

�

�hB
� · hAd�

= �
�

�hB
� · fA − hA · fB

��d� , �15�

provided the following boundary integral is zero:

�
	
� �̂�

��̂�2
�� � hA� � hB

� −
�̂

��̂�2
�� � hB

�� � hA� · n d	 .

�16�

As was noted for Eq. �11�, there may be several �A ,B�−�
configurations that result in Eq. �16� equaling zero. For now,
the simple requirement that �A ,B� are compact sources
within the infinite domain � simultaneously sets to zero the
value of the integrals in Eq. �11� and Eq. �16�.

Furthermore, we observe that in the quasistatic limit
��� /�
1� used for low-frequency electromagnetic induc-
tion studies of the deep Earth, with the additional assumption
that the spatial variability in the magnetic permeability of the
rocks in question is minimal and therefore assumed to take
the value of free space �0=4��10−7 H /m, the representa-
tion theorem of correlation type simplifies considerably,
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2i��0�
�

hB
� · hAd� � �

�

�hB
� · fA − hA · fB

�� d� �17�

and is reminiscent of the functional form for the scalar pres-
sure diffusion equation �6�.

III. REPRESENTATION THEOREMS AND GREEN’S
FUNCTIONS

We denote by hA and hB, respectively, Green’s
functions for magnetic field due to the impulsive sources fA
=sA��r−rA� and fB=sB��r−rB� where �� · � is Dirac’s delta
function and s is a unit vector. Hence, the representation
theorem of convolution type in Eq. �12� reduces to a reci-
procity relation

sA · hB�rA� − sB · hA�rB� = 0 �18�

with the usual caveat that the integral Eq. �11� vanishes.
Moreover, these specific definition for the source terms fA
and fB simplify Eq. �17� to,

sA · hB
��rA� − sB · hA�rB� = 2i��0�

�

hB
� · hAd� , �19�

while the additional constraints of the quasistatic limit, con-
stant magnetic permeability, and vanishing boundary integral
Eq. �16� remain. Using the reciprocity expression Eq. �18�,
the left-hand side of Eq. �19� can now be written entirely in
terms of Green’s function observed at B for a source at A

sA · �hB
��rA� − hB�rA�� = 2i��0�

�

hB
� · hAd� �20�

and vice versa

sB · �hA
��rB� − hA�rB�� = 2i��0�

�

hB
� · hAd� . �21�

To understand the role of random noise in the evaluation of
the volume integrals on the right side of Eq. �20� and �21�,
let’s start by examining this term in its discrete form where
the domain � is discretized into a set of infinitesimal differ-
ential elements d� j such that

�
�

hB
� · hAd� � �

j

hB
��r j� · hA�r j�d� j . �22�

Letting sA=sB=s, substitution of the reciprocity relation Eq.
�18� into Eq. �22� yields

hB
��r j� · hA�r j� = �s · h j

��rB���s · h j�rA�� , �23�

where the sources at point r j are also taken in to lie in the s
direction. It is now clear that Green’s functions in Eq. �20�
and �21�, or more specifically, the s component of which,
arise from an the summation of an infinite number of
s-directed impulsive sources j throughout the volume �,
whose effects need only be known at two locations: rB and
rA.

To account for the variable spectral content f��� of a
naturally occurring random noise source, the product of the

squared power spectrum amplitude �f����2 with the
j-summation terms on the right-hand side of Eq. �23� is
�f����2�s ·h j

��rB���s ·h j�rA��, which, in turn, can be written as

�� s · h j�r�f�����r − rB�d��

��� s · h j�r�f�����r − rA�d� . �24�

As a consequence of the representation theorem of convolu-
tion type, Eq. �12�, the expression in Eq. �24� simplifies to
�s ·h j�rB����s ·h j�rA��, whereupon substitution into Eq. �20�
and �21�, our final expression for Green’s function in the
Fourier domain emerges

s · �hB
��rA� − hB�rA���f����2 = s · �hA

��rB� − hA�rB���f����2

= 2i��0��s · h�rB����s · h�rA��� ,

�25�

where � · � denotes expectation value.
Inspection of Eq. �25� reveals that the difference between

Green’s function for magnetic field and its complex conju-
gate projected in the s direction and scaled by the power
spectrum of the uncorrelated and volume-distributed random
noise sources, is given simply by the correlation of the s
components of the field measured at two distinct points.
Transforming this expression into the time domain, the prod-
uct between spectral power density and Green’s function be-
comes a convolution operation, whereas the prefactor i�
maps into a time-derivative. Hence, in the time domain,
Green’s function for magnetic field H�r , t� becomes

s · �HB�rA,− t� − HB�rA,t�� � F�t�

= s · �HA�rB,− t� − HA�rB,t�� � F�t�

= 2�0
�

�t
��s · H�rB,t�� � �s · H�rA,t��� , �26�

in which F�t� is the autocorrelation of the noise. The symbols
� and � denote correlation and convolution, respectively.

IV. VALIDATION EXAMPLE

To determine whether the aforementioned theory holds
promise for eventual interpretation of observational data, a
simple numerical experiment was conducted to validate the
accuracy of Eq. �25� in the low frequency limit upon which
the theory is based. The calculation is as follows: Assuming
a double-half space model with conductivity �=1.0 S /m in
the z0 region and �=0.1 S /m elsewhere, we compute the
EGF at two points A and B due to a volume distribution of
100 Hz “noise” sources whose response is recorded at these
two points. For simplicity, we choose s= ẑ, and further dis-
tribute the noise sources equidistant over a �=25 m grid in
the x, y, and z directions. With this model configuration the
corresponding skin depth is 160 m in the resistive half space
and 50 m in the conductive one. Hence, with points A and B
at coordinates �x ,y ,z�A= �206.25,206.25,−6.25� m and
�x ,y ,z�B= �−206.25,−206.25,−6.25� m, respectively, a
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noise source volume extending from �x� , �y� , �z��900 m en-
compasses several skin depths of distance between observa-
tion points A and B and the noise sources.

Choosing �=25 m results in 389 017 independent noise-
source forward calculations. Halving � increases this num-
ber to over three million. Hence, even though quasianalytic
solutions for induction in layered media have been known
and revisited for over a century �13–17�, the Hankel trans-
forms at the core of such calculations amount to a significant
computational cost when the number of forward calculations
is large, as in the present case. Various quadrature and digital
filter techniques have been developed to minimize this cost
�18–20�, but even at 10–100 calculations per second, the
wall clock time required for the proposed noise volume
quickly escalates to several hours for a desktop computer.

To make this straightforward problem tractable in a rea-
sonable amount of time, we turn instead to the staggered grid
finite difference �FD� method �21,22�, which by virtue of the
reciprocity relation in Eq. �18�, allows for the calculation of
millions of noise sources with only two forward solves: One
with a source at A, the other with a source at B. For the
calculations shown here, the finite difference grid is parti-
tioned over a modest 81�81�81 nodes on a 1�1�1 km
volume.

The numerical results �Fig. 1, bottom� are in general
agreement with the direct-calculated FD field value at point
A and the EGF-estimated ones �symbols�, with increasing
accuracy realized by the dense � /2 distribution of noise
sources. FD-computed field values hz�x̃� along the z=0 el-
evation �lines� illustrate the exponential decay and oscilla-
tory nature of the magnetic field as a function of distance.
Notice that the point A lies near a rapid sign-inflexion in the

field and therefore represents a particularly challenging place
to recover the EGF. To assess which of noise sources con-
tribute most to the EGF estimation �Fig. 1, top� we plot the
integrand in the left-hand side of Eq. �17� along the same z
=0 elevation. The exponential decay and oscillatory behavior
of the integrand along this profile reinforce our appreciation
for the numerical difficulty of accurately evaluating this mul-
tidimensional integral.

V. DISCUSSION

The magnetotelluric �MT� method is a classic geophysical
method for inferring the spatial distribution of electrical con-
ductivity of Earth’s interior which relies on ambient electro-
magnetic disturbances of magneto- and ionosphere origin for
the source of electromagnetic forcing �23,24�. Inaccuracies
in the resulting inferences on the physiochemical state of
Earth’s interior can be amplified by nonplane wave sources
such as power lines, electric fences, trains and the like. Con-
trary to the MT method, the EGF procedure outlined above
relies on random uncorrelated noise sources and, hence, has
the potential for improved subsurface mapping in areas
where the MT method fails due to excessive cultural inter-
ference.

Previous work on dissipative, scalar fields �e.g., pressure
diffusion� has demonstrated that time-reversal invariance of
the governing differential equation is not a prerequisite for
EGF estimation �6�. The work presented here parallels the
development of the pressure diffusion problem and applies
the analysis to low-frequency electromagnetism, treating the
fields in their full vector form. Like the pressure diffusion
case, the low-frequency magnetic field EGF can be recov-
ered by cross-correlation of time series measured at two dis-
crete locations and time-reversal invariance is not a prereq-
uisite.

The assumption of low-frequencies—that is, the quasi-
static limit—is only a simplifying component of the preced-
ing development and does not affect the implications of the
final result in Eq. �25�. To see what effect incorporation of
“full physics” would have, observe that the first integral in
Eq. �15�, when retained to account for the wave propagation
terms, can be rewritten as i����eA ·eB

�d�. Assuming that
electric permittivity is sufficiently uniform throughout the
volume �, this added term would ultimately result in the
additional requirement of correlating electric fields, too. Re-
gardless of whether the electric field terms are kept or dis-
carded, the magnetic field EGF is a direct reflection of the
conductivity distribution throughout the system. Our work
shows that a priori knowledge of this distribution is not re-
quired for EGF estimation.

It has been previously pointed out that when considering
the electromagnetic problem, the noise sources must be spa-
tially correlated with the conductivity variations in the me-
dium �6�. For the case of magnetic fields, we have shown
that this restriction is no longer necessary. However, when
considering electric field Green’s functions, its necessity is
clear: The conductivity term in the electric field “curl-curl”
equation plays the same functional role as the permeability
does in Eq. �5�. And while it’s reasonable in many geophys-

A B

A B

FIG. 1. �top� Relative contribution of noise sources �I to EGF
estimation as a function of position x̃ along a line passing through
two passive receiver locations A and B at x̃= �291 m. �bottom� In
symbols, finite difference �FD� and EGF calculated values of the
vertical magnetic field at A due to a source Ms= ẑ��r−rB�. Lines
indicate FD-computed hz at z=0.
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ical exploration scenarios to neglect permeability variations
in the rocks, a corresponding dismissal of the conductivity
variations would be defensible only in exceptional circum-
stances �25�.

Examination of the final expression in Eqs. �25� and �26�
for the superposition of the magnetic field EGF and its time-
reversed form reveals that parallel components �s-directed�
of the ambient magnetic field are required at the two loca-
tions A and B, and that the noise sources are all taken to be
polarized in the same s direction. While the former is unre-
markable from an implementation perspective, the latter ap-
pears absurd in light of the random nature of the noise. To
reconcile this apparent problem, we observe that a random
spatial distribution of point noise sources might also be ran-
domly distributed in its polarization, and hence, within this
latter distribution there will be a component parallel to s for
each of the sources.

The preceding development also does not place any re-
strictions on the type of noise, other than is must be “infini-

tesimal” in some spatial sense. Both magnetic and electric
current sources are admissible, including idealized dipole
sources. Hence, electromagnetically cluttered environments
such as urban areas, oilfields and industrial facilities may
provide a rich spectrum of noise from which to draw upon
for Green’s function estimation and are attractive sites for
future potential validation exercises with observed time se-
ries of magnetic field. The effect of correlated, heteroge-
neous, and anisotropic noise sources on the recovered EGF is
an interesting question, but lies beyond the scope of the
present study and will be addressed in future publications.
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